ZEISS honors outstanding quantum technology-based approaches to solving real-life problems and reinforces its scientific network.

  • Prof. Dr. Friedemann Reinhard from the University of Rostock and Dr. Gabriel Puebla-Hellmann from QZabre AG in Zurich have won the ZEISS Quantum Challenge 2020.
  • The aim of the challenge is to identify promising solutions in quantum technology, discuss them with other experts, and partner up in order to advance these ideas together.
The winners of the ZEISS Quantum Challenge 2020 have been chosen: Prof. Dr. Friedemann Reinhard, Professor of Quantum Technology at the University of Rostock, and Dr. Gabriel Puebla-Hellmann, CEO of QZabre AG in Zurich, impressed the expert judges with their ideas. ZEISS uses this prize to honor outstanding approaches to solving real-life problems in medical technology, microscopy and industrial metrology through quantum technology.

Problem-solving through quantum technology

“Quantum technology is being developed at an incredible pace and it offers untapped potential for future innovations in both business and science. The ideas submitted by the two winners offer promising solutions that could considerably advance the use of quantum technology in real-life applications and products,” says Dr. Max Riedel, Head of the ZEISS Innovation Hub @ KIT and judge for the ZEISS Quantum Challenge. The winners were announced at the QuApps conference on 2 March 2021 and presented their approaches to an audience of experts.

From scientific application to market-ready products

The idea behind the ZEISS Quantum Challenge is to make the leap in quantum technology, from scientific application in the lab to market-ready products. That’s because even though quantum technology is always maturing, it has not yet transitioned from the lab to industrial application. This prompted ZEISS to launch a competition dedicated to the use of quantum technology in sensor and imaging applications in real-life conditions. To do this, ZEISS called on the scientific community working in the area of quantum technology to tackle six real-life challenges in the following categories: medical technology, microscopy, and industrial metrology. The aim of the challenges was to identify promising solutions, discuss them with other experts, and partner up in order to advance these ideas together.

The winners of the ZEISS Quantum Challenge

Prof. Dr. Friedemann Reinhard, Professor of Quantum Technology at the University of Rostock, is one of the winners of the ZEISS Quantum Challenge 2020.

Prof. Dr. Friedemann Reinhard was honored for his idea regarding label-free 3D microscopy. The solution uses magnetic resonance imaging (MRI), instead of optical microscopy, to image small samples. It may sound far-fetched, but it could be doable by Nitrogen Vacancy (NV) centers (nitrogen defect centers in diamond). These have already shown that nuclear resonance signals from volumes of around 10 micrometers can be detected relatively quickly and easily. Using additional magnetic field gradients makes it possible to recreate an MRI scanner on a micrometer scale,” says Reinhard. This could then be used to examine nontransparent specimens in 3D. “It would also enable label-free imaging, e.g. by imaging the chemical shift. And it could image movements or diffusion.” It could be deployed in the life sciences. Another promising area would be battery research. Here, magnetic resonance spectroscopy is already being used on larger scales, and optical microscopy is not an option, since batteries are not transparent. Movements and diffusion are also of interest.

Dr. Gabriel Puebla-Hellmann, CEO of QZabre AG in Zurich, is one of the winners of the ZEISS Quantum Challenge 2020.

Dr. Gabriel Puebla-Hellmann was honored for his contribution to precise position and direction determination using quantum technology. At the heart of his solution are Nitrogen Vacancy (NV) centers – atom-sized, highly sensitive magnetic field sensors. “Because of their size, many NVs can exist in a small volume, creating a very sensitive magnetic field sensor on the sub-100 nanometer scale that determines both the value and direction of the field,” says Puebla-Hellmann. ” This sensor is special because it remains precise across more than six orders of magnitude, thus offering a much higher resolution for the same testing volume than other technologies.”

Our approach is particularly relevant for industrial metrology. For example, when manufacturing high-precision components, the dimensions have to be verified post-production. Our approach helps to make this step more precise – and potentially faster, too.


ZEISS is an internationally leading technology enterprise operating in the fields of optics and optoelectronics. In the previous fiscal year, the ZEISS Group generated annual revenue totaling 6.3 billion euros in its four segments Semiconductor Manufacturing Technology, Industrial Quality & Research, Medical Technology and Consumer Markets (status: 30 September 2020).

For its customers, ZEISS develops, produces and distributes highly innovative solutions for industrial metrology and quality assurance, microscopy solutions for the life sciences and materials research, and medical technology solutions for diagnostics and treatment in ophthalmology and microsurgery. The name ZEISS is also synonymous with the world’s leading lithography optics, which are used by the chip industry to manufacture semiconductor components. There is global demand for trendsetting ZEISS brand products such as eyeglass lenses, camera lenses and binoculars.

With a portfolio aligned with future growth areas like digitalization, healthcare and Smart Production and a strong brand, ZEISS is shaping the future of technology and constantly advancing the world of optics and related fields with its solutions. The company’s significant, sustainable investments in research and development lay the foundation for the success and continued expansion of ZEISS’ technology and market leadership. ZEISS invests 13 percent of its revenue in research and development – this high level of expenditure has a long tradition at ZEISS and is also an investment in the future.

With over 32,000 employees, ZEISS is active globally in almost 50 countries with around 30 production sites, 60 sales and service companies and 27 research and development facilities. Founded in 1846 in Jena, the company is headquartered in Oberkochen, Germany. The Carl Zeiss Foundation, one of the largest foundations in Germany committed to the promotion of science, is the sole owner of the holding company, Carl Zeiss AG.

Further information at www.zeiss.com

0 antwoorden

Plaats een Reactie

Draag gerust bij!

Geef een antwoord

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.