Berichten

Nieuwe investering in licht gedreven biosensor versnelt de beschikbaarheid van hoogwaardige, goedkope tests en maakt vroege detectie van kanker, Covid-19 en andere ziekten mogelijk

Surfix kondigt vandaag een investering van € 8,5 miljoen aan door een Nederlands consortium bestaande uit de bedrijven Qurin Diagnostics en LioniX International, industrieversneller PhotonDelta en de ontwikkelingsmaatschappij Oost NL voor de verdere ontwikkeling van het “plug-and-play” diagnostiek platform van Surfix.

Surfix gebruikt de investering om de ontwikkeling van zijn snelle, betrouwbare en aantrekkelijke “plug-and-play” diagnostiek platform voor allerhande “point-of-care”-tests te versnellen. De eerste toepassingen zijn vroege kankerdiagnose, detectie van Covid-19 en opsporing van pathogenen in water voor aquacultuur.

Wageningen, Nederland, 25 mei 2021

Snel en gemakkelijk betrouwbare testresultaten verkrijgen

De wereldwijde Covid-19-pandemie benadrukt de behoefte aan snelle en betrouwbare point-of-care diagnostiek, altijd en overal. Ook in gebieden waar geen ziekenhuis, kliniek of geschoold medisch personeel aanwezig is. Een monster van de patiënt wordt ter plekke, naast het ziekenhuisbed, in de spreekkamer of zelfs thuis getest. Binnen enkele minuten is het resultaat zichtbaar en kan er gepaste actie worden ondernomen. Het is gebruiksvriendelijk, in sommige gevallen levensreddend, en er komt geen tijdrovend en duur laboratoriumwerk of gecompliceerde apparatuur aan te pas. De beschikbaarheid van een snelle en betrouwbare test zou een enorme stap voorwaarts betekenen in de strijd tegen de huidige en toekomstige pandemieën. Het uiteindelijke doel van Surfix is ​​om een ​​test te maken die voor de massa beschikbaar is en slechts enkele euro’s kost.

Uniek diagnostisch platform

De door Surfix ontwikkelde biosensor bestaat uit twee hoofdelementen: het belangrijkste deel is de chip waarin de daadwerkelijke detectie plaatsvindt. In het andere deel wordt het monster verwerkt in microfluïdische kanalen.

In het detectiegedeelte gaat licht door de chip (vergelijkbaar met een minuscule glasvezelspiraal) in plaats van elektriciteit. Biomoleculen die aan het oppervlak van de chip vastzitten, kunnen op basis van bioherkenning andere biomoleculen uit een monster (bijvoorbeeld bloed of urine) “vangen”. Hierbij veranderen de eigenschappen van het licht dat zich voortbeweegt door de chip, welke kunnen worden gedetecteerd en gelezen door het sensorsysteem. Deze verandering is een maat voor de aanwezigheid van het biomolecuul in het monster waarnaar men op zoek is.

Elk monster moet worden bewerkt voordat het in het detectiegedeelte terechtkomt (vergelijkbaar met een heel klein laboratorium). Dit vindt plaats in microfluïdische kanalen die het monster naar het detectiegedeelte voeren.

Voor het detectiegedeelte heeft Surfix unieke nanocoatings ontwikkeld die binding van biomoleculen mogelijk maken en de gevoeligheid van de sensor vergroten, terwijl het microfluïdische deel is bedekt met een nanocoating die biomoleculen afstoot en de stroom van het monster door de microfluïdische kanalen verbetert.

Het “plug-and-play” diagnostiek platform kan worden gebruikt om virussen, DNA en RNA, eiwitten zoals antilichamen en antigenen en andere biomoleculen te detecteren.

Combinatie van Nederlandse technologie

Het “plug-and-play” diagnostiek platform combineert de geïntegreerde fotonica-chip van LioniX met de nanocoatings van Surfix voor de juiste werking van zowel het detectiegedeelte als het microfluïdische gedeelte. Geïntegreerde fotonica is een revolutionaire technologie waarmee chips kunnen worden ontwikkeld die enorme hoeveelheden data kunnen detecteren, vastleggen en verwerken met licht in plaats van met elektriciteit. Gebruik van licht betekent dat nieuwe soorten apparaten en systemen, zoals biosensoren, kunnen worden gemaakt die radicaal goedkoper, sneller, kleiner, meer robuust en betrouwbaarder zijn tijdens het gebruikt, terwijl ze minder energie verbruiken. Qurin wordt de launching customer van het platform op het gebied van kankerdiagnostiek in een setting, waarbij de gehele volwassen bevolking op regelmatige basis zou kunnen worden gescreend. Op deze manier hoopt Surfix bij te dragen aan de vroege opsporing en genezing van de kankerpatiënt. De nieuwe biomarker-technologie van Qurin heeft tot doel de meeste, zo niet alle, kankersoorten in urine te detecteren, waaronder longkanker en kanker van de dikke darm.

Maarten Buijs, CEO van Surfix, is enthousiast over de investering: “Met deze ontwikkeling hebben we de relatie met onze moederbedrijven LioniX en Qurin, beide spin-offs van de Universiteit Twente, verdiept. Met OostNL en PhotonDelta aan boord is het onze drive om point-of-care diagnostiek naar een hoger niveau te brengen. In combinatie met het netwerk en de ervaring van de twee Nederlandse publiek-private organisaties, de toonaangevende geïntegreerde fotonica-technologie van LioniX en de medische kennis van Qurin, zal de investering ons in staat stellen om verdere industrialisatie op ons te nemen en om de opwindende resultaten in de detectie van biomarkers die tot nu toe zijn verkregen, klinisch te kunnen valideren.”

Senior Investment Manager Tech Pieter Klinkert van Oost NL sluit zich daarbij aan: “De oplossing van Surfix ondersteunt de belangrijke ecosystemen rond fotonica en microfluïdica, twee sleuteltechnologieën waar onze regio in uitblinkt. Surfix kan een doorbraak realiseren op het gebied van diagnostiek op basis van fotonica. Surfix is een spin-off bedrijf van Wageningen University & Research en werkt actief samen met WUR en het fotonica cluster in Twente. Hierdoor past het perfect in het netwerk rond fotonica en MedTech in Oost-Nederland.”

Over Surfix

Surfix is ​​opgericht als een spin-off bedrijf van de vakgroep Organische Chemie van Wageningen University & Research en is zeer succesvol geweest in het leveren van R & D-diensten op het gebied van nanocoatings voor biosensoren en microfluïdica. Het bedrijf richt zich nu op de ontwikkeling en marketing van het “plug-and-play” diagnostiek platform.

Surfix ledenpagina

To showcase the partners in the nanotechnology ecosytem, MinacNed has worked together with a number of member companies to shoot a promotional video about their company. These videos are now available on the partner profile pages. The video’s give a short pitch and insight in the technology and services that our MinacNed members have to offer to you.

If you are interested to learn more about the member company, you will find the contact information the member page. The following MinacNed members have published a video:

IamFluidics

Lionix International

Surfix

VSParticle

You will find the video via the company logo, which will open a video player in a new window. All videos are produced by Studio Lek.

By Maarten Buijs, from PhotonDelta

What are Photonic Integrated Circuits?

Electronics versus Photonics

Where electronics deals with the control of electrons on a chip, photonics does the same with photons. It covers the physics, engineering, technology and applications of light (photon) generation, detection, and manipulation through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photons travel at the speed of light and move through certain materials with almost no loss. Photonics can have a very high frequency range, resulting in high data throughput at a fraction of the energy costs of electronic circuits.

Adopting photons to carry signals over low-loss optical fiber transmission lines, and so replacing coaxial cables in telecommunication systems, led to the first significant business where photonics was applied. [1]

Integrated Photonics

Just as electronic functions can be integrated into an electronic integrated circuit (IC), photonic functions can also be integrated into a photonic integrated circuit (PIC). Building on the success of silicon (Si) as the basis of the IC revolution, silicon photonics (SiPh) has become an important part of the integrated photonics development.

Si is transparent to infrared light with wavelengths above about 1.1 micrometers, so also to the 1.55 micrometer wavelength used by most fiber optic telecommunication systems. In addition, it has a very high refractive index, of about 3.5, much higher than that of silicon oxide (1.5), which allows strong confinement of light in Si structures embedded in silicon oxide (waveguides). These properties make Si well suited for usage in telecom. However, Si does not allow direct generation of light. Indium phosphide (InP) does not have this restriction, because it has a direct semiconductor bandgap. So, PICs based on the InP material platform became commercially very successful; InP integrated photonics has been a critical enabler for modern telecommunications.

A photonic circuit. Image: LioniX International 

InP allows for the integration of active and passive elements like high-performance amplifiers, lasers, modulators, and detectors in combination with interferometers within one chip in the 1.1 – 1.6 mm spectral window. This leads to performance advances, energy savings and cost reductions,[2] which has allowed InP integrated photonics to revolutionize data communications, precision metrology (for example LIDAR in autonomous vehicles), spectrometry, and imaging. Current state-of-the-art devices integrate hundreds of functions onto a single chip.

Another material system making strong inroads into integrated photonics is silicon nitride (SiN). It excels at passive light processing in the visible, near-infrared (NIR) and IR range thanks to among others its very low light intensity loss in the waveguide, small bend radii and adjustable polarization. Waveguides guide light on integrated devices but can also perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals.

By integrating SiN PICs with active components based on other technologies like InP, high performance photonics Systems-in-Package devices can be manufactured.

Biosensors based on the SiN platform explained

One of the photonic industries key application areas concerns biosensors based integrated photonic circuits. SiN PICs are in particular very well suited for the detection of biological molecules. They work in a very wide wavelength range from visible to near-infrared, avoiding the water absorption window of water and allowing fluorescence detection. Also, this wavelength range makes it easy to combine them with a cheap laser source.  The small bend radii possible in SiN allow the light-constraining waveguide to be ‘’rolled up” on the surface, creating a very long light path. In combination with the ultra-low loss of propagating light in SiN, this leads to a long interaction time of the light with biomolecules that are in the vicinity of the surface. Biosensors based on SiN PICs are thus highly sensitive. A very low detection limit can be achieved by using self-referencing optical structures which eliminate sources of noise like temperature variations.

Biosensors are or will be applied in a multitude of areas, like towards health-related targets (e.g. glucose monitoring in diabetes patients, early detection of the onset of cancer or of infectious diseases), environmental applications (e.g. the detection of pesticides and pollutants), and the food industry (e.g. determination of antibiotics or hormone residues in food, early detection of infectious diseases).

Benefits of photonic biosensors

Biosensors work by detecting so-called analytes, in this case, biomolecules or biomarkers, which in the case of human health care indicate whether a condition like cancer or an infection is present. Typically, the analyte is detected in a sample of bodily fluids like blood, urine, or sputum. These analytes are detected by being captured by so-called bioreceptors, which can be antibodies, nucleic acids, proteins, pathogens, or even created by biological engineering. In their turn, bioreceptors are typically bound covalently (or by the sharing of electron pairs between atoms) to the surface of the waveguide. The bioreceptors are the conjugate to a particular analyte and therefore very selective.  By applying an anti-fouling layer on the non-waveguide surface of the chip, one can assure that the bioreceptors are only bound to the SiN waveguide and not to adjacent areas of the surface. This biomarker-specific attachment to the waveguide brings the biomarkers very close to the surface of the waveguide. It also implies that additional (e.g., fluorescent) labeling of the biomarker is not needed. Being able to do label-free direct detection significantly simplifies the detection workflow.

The optical working principle of the detection is based on the fact that part of light which travels through the waveguide (at very low loss in SiN) sticks out of the waveguide, to so-called evanescent field. In the case of SiN this field contains a significant part of the total light intensity. The bioreceptor – biomarker couple on the surface of the waveguide changes the effective refractive index of the waveguide. By making use of waveguide interferometers or resonators, these refractive index changes can be translated into a quantitative assessment of the biomarker.

Also, because of the low bend radii possible in SiN, these structures can be designed very compactly and many such structures can be fitted onto the surface of a single chip. By tuning the analyte deposition, different waveguide structures can be covered with different bioreceptors, called multiplexing, so that multiple biomarkers can be detected on the same chip. This can enhance the sensitivity towards either one difficult-to-detect biomarker or towards one health condition with several characteristic biomarkers. It can also be used to measure several health conditions with one single chip.

Increasing rapid point of care testing

In the past, testing of patient samples for biomarkers was centralized at large hospitals or community laboratories in order to improve cost-effectiveness, to cope with economic pressure, and to reduce health care costs. This resulted in higher effectiveness and high-quality analytical results. However, the need for a rapid turnaround time and the “permanent” availability of local general practitioners not only during the day but also on nights and weekends has increased the need for more decentralized diagnostic approaches such as the point-of-care testing (POCT) occurring at the patients’ bedside, in operation theatres, in emergency rooms, and at accident sites.[3]

The introduction of widespread point-of-care testing of patients for diagnosis as well as screening can be significantly accelerated by combining the extreme sensitivity and selectivity of the SiN biosensor technology with the possibilities to mass produce the SiN PICs with processes, technologies and equipment derived from those used to mass manufacture electronic integrated circuits. Active components like light sources (to generate the sensing light) and detectors (to register the change of the sensing light induced by the biomolecules) cannot be made out of SiN. Therefore, integration of very small and cheap commercially available light sources (e.g. Vertical-Cavity Surface-Emitting (VCSEL) lasers) and detectors needs to be done as a step in the production process of the biosensor.

How The Netherlands and PhotonDelta work on accelerating development of Integrated Photonics

With two centers of excellence covering the important technologies for integrated photonics, and a long history of successful contributions to the integrated electronics industry like ASML, NXP and ASM International, the Netherlands is uniquely positioned to play a strong role in the continuously growing area. This drive is orchestrated by PhotonDelta, a Dutch public-private partnership consisting of a cohesive cluster of companies and highly qualified knowledge institutes, set up to accelerate and reduce time to market of integrated photonics products. PhotonDelta strengthens the ecosystem from within by stimulating and facilitating co-operation amongst the integrated photonic companies and knowledge institutions, developing the common business strategy, setting goals and stimulating co-operation between partners in the Netherlands and beyond. PhotonDelta acts as a growth accelerator and so helps to amplify and scale existing companies and kickstart new ones by having access to significant funding.

Notable academic centers of excellence of photonic integrated circuits in InP are the University of California at Santa Barbara, USA, and the Eindhoven University of Technology in the Netherlands. In Eindhoven, the technology is commercialized through the company SmartPhotonics. Important European academic centers of excellence for SiN PiC technology include EPFL at Lausanne, Switzerland and the University of Twente in Enschede, the Netherlands. The technology is commercialized through the companies Lionix International in the Netherlands and Ligentec in Switzerland.

How the PhotonDelta ecosystem works on biosensors

With support from PhotonDelta, Lionix has teamed up with fellow Dutch company Surfix, who specialize in nanocoatings for life science applications and Qurin, diagnostics specialists to develop  SiN PIC-based biosensors for the direct detection of the SARS-CoV-2 virus responsible for COVID-19. The group is aiming for a quick and reliable POCT that removes the need for time-consuming lab work. Two tests are under development, one that will determine if a patient is currently infected by the virus by detecting virus receptors.  The second test will determine if a patient has already been infected by the virus by detecting antibodies – the proteins produced by the immune system in response to infection.

The biosensor will detect the receptors for the virus, detecting the virus directly rather than using the current common method which involves destroying the virus’s shell and looking for the presence of released genetic material. This direct detection means results can be returned with speed, possibly even with a few minutes. Both tests are expected to be readily available within 6-9 months. An important part of this initiative will be to set up the infrastructure for mass-producing very reliable disposable biosensors. The long-standing partnership between the key players in this initiative means the groundwork has already been laid for rapid product development and rollout. When successful, this initiative will not only contribute to the fight against COVID-19, but will also have established SiN PIC technology as a platform for the further roll-out of POCT for screening and diagnosis.

Conclusion

Integrated Photonics based biosensors will advance the roll-out of point-of-care diagnostics. Further development of the technology should deliver more sensitive and more accessible biosensors for rapid diagnosis. This development will be driven, in part, by strategic collaboration between industry leaders, innovators, and health care organizations.

This is one of a series of articles discussing photonics based biosensing and the work of PhotonDelta and its partners. Future articles will include reporting on the current and long-term application of the technology for tackling Covid-19 and other point of care testing applications, as well as detail PhotonDelta’s roadmap towards high volume production of disposable biosensors.

Read the original article here

Image credit Lionix International

Twents initiatief ‘Viralert’ richt zich op samenwerking in strijd tegen coronavirus

De beste manier om uit deze crisis te komen, en op een eventuele toekomstige crisis voorbereid te zijn, is samenwerking. Bedrijven en instanties hebben elk hun eigen specialisme en door deze te bundelen kan er sneller en efficiënter worden gewerkt. Niet ieder voor zich, maar allen tezamen een maatschappelijk probleem oplossen, dat is hoe er in Twente gewerkt wordt. Ronny van ‘t Oever, CEO van Micronit Microtechnologies, wilde iets betekenen tijdens de coronacrisis en zag hoeveel kennis en kunde er bij bedrijven en kennisinstellingen ligt. Micronit heeft zelf ook deel van de oplossing in handen. Daar moest wat mee gedaan worden, vond Ronny. Want bij het samenkomen van verschillende expertises kan het verschil gemaakt worden. Op deze manier is platform ‘Viralert’ in het leven geroepen. Twentse bedrijven als Micronit, Demcon, LioniX International en VyCap werken samen met kennisinstellingen uit Enschede, Wageningen, Nijmegen en de rest van Nederland. Maatschappelijk belang is de motiverende kracht, dit gaat voor de partijen boven het eigen economische gewin.

Viralert

Het Viralert initiatief bestaat inmiddels al uit 19 partners uit het bedrijfsleven en een aantal kennisinstellingen uit heel Nederland, waaronder de Universiteit Twente (UT). Het platform is opgericht door Ronny van ‘t Oever, directeur van het in Twente gevestigde Micronit, en Per Slycke, voormalig medeoprichter van het Enschedese bedrijf Xsens. Micronit is een Enschedees bedrijf dat microfluïdische chips ontwikkelt die gebruikt worden bij testen om te bepalen of iemand corona heeft, en bij onderzoek naar het virus. Andere Twentse partners binnen dit samenwerkingsverband zijn o.a. Demcon, expert in mechatronica, robotica en tijdens de coronacrisis bekend van onder andere hun beademingsapparatuur. Ook LioniX is Twents, ze zijn gespecialiseerd in fotonica en micro-nanotechnologie. De kracht van het platform ligt hem in een bundeling van verschillende organisaties met allen hun eigen specialisatie en discipline.

Motivatie

“Wij zijn bereid om te delen en niet voor het voor ons economisch beste scenario te gaan, maar voor het scenario waarbij wij meer efficiënt kunnen samenwerken en we sneller vooruit kunnen. Dat is wat wij binnen Viralert hebben afgesproken, daar maken wij ons hard voor”, zegt Arne Leinse, directeur van LioniX International. Alle partners binnen het initiatief scharen zich achter het maatschappelijk belang, andere belangen zijn daaraan onderhevig. “Alles binnen Viralert draait om samenwerken. Nederland heeft een levendige biomedische industrie met een enorm innovatiepotentieel. Het is eigenlijk niet meer dan logisch om bij een dergelijke crisis de koppen bij elkaar te steken om iets te ontwikkelen dat helpt”, zegt Ronny van ’t Oever. Viralert hoopt dat de overheid gaat zien dat dit soort samenwerkingsverbanden het waard zijn om in te investeren. “Momenteel richt de overheid zich nog te veel op het opschalen van bestaande testen in plaats van de ontwikkeling van innovatieve sneltesten”, zegt Arne Leinse.

Bron: Twente.com

Lees ook het interview met Ronny van t Oever over Viralert.

Surfix B.V., together with its shareholders Qurin Diagnostics B.V. and LioniX International B.V., already successfully developing bio-photonic nanochips for cancer detection and other applications, announced an accelerated development plan to allow mass-scale COVID-19 diagnosis and immunity detection with the financial support and in close collaboration with PhotonDelta.

The desktop testing device will yield reliable test results within 5 minutes and is scheduled to be available for commercial exploitation within 6-9 months. The device will be built around a photonic biochip using LioniX’ mature and proven silicon nitride based integrated optics technology (TriPleX™), a key technology within the PhotonDelta ecosystem. The surface functionalization and biochemical assay development are provided by Surfix and Qurin Diagnostics, respectively. The combination of these disciplines enables a successful, fast and accurate virus detection platform. The development will be supported by and in tight collaboration with Photon Delta (a Dutch public private partnership). The PhotonDelta support will be both in co-funding as in further future upscaling and exploitation.

Qurin Diagnostics, Surfix and LioniX International  are already working together closely on early cancer detection and have realized an ultra-sensitive biochip sensor array which will be applied for early cancer detection using urine as a liquid biopsy.

Qurin Diagnostics

Coenraad K. van Kalken, CEO of Qurin Diagnostics, said ”This collaboration confirms our strategic vision that the ultrasensitive biochip we’re jointly developing for mass scale, low-cost cancer screening is broadly applicable in  biological agri-food markets as well as in other biomedical fields. All these fields need highly accurate molecular diagnosis technology at lower cost than complex and labor intensive molecular technologies, currently used.”

Surfix

Luc Scheres CTO of Surfix said “We have developed specific nanocoatings which enhance the sensitivity, limit of detection and reliability of the photonic biochip. Of course every application comes with its own specific challenges and demands, so close collaboration with experts from other disciplines is essential to successfully develop a diagnostic test. Therefore, we are happy to strengthen our collaboration with LioniX International and Qurin Diagnostics for the accelerated development of a corona virus test.”

Lionix International

“The TriPleX™ platform has shown its capabilities and possibilities for high volume cost effective cancer diagnostics and investing in this new application is not merely a commercial driven choice, but also driven by societal importance. Since we have a solid technology base and reliable collaboration partners, who also enabled the cancer diagnostics measurements, we have large confidence in realizing a successful COVID-19 test.”, said Arne Leinse, CEO of LioniX International.

PhotonDelta

“‘This is a great example of a joint effort of partners in the PhotonDelta ecosystem to develop meaningful, low costs and effective solutions enabled with integrated photonics technology. The initiative builds upon our knowledge on ultra-sensitive biochips, which might be of utmost relevance in detecting the current COVID-19 crisis. Bio sensing is one of the long-term development programs (roadmap) within PhotonDelta where industry, universities and the entire PhotonDelta ecosystem work together on next generation solutions and testing devices on viruses and other diseases‘’, said Ewit Roos, CEO of PhotonDelta

Download the full press release (PDF)

Read more about MinacNed partners Lionix International BV and Surfix

Read more about PhotonDelta and Qurin Diagnostics

In response to the corona crisis, the MESA+ NanoLab has been closed for development and research since 15 March. The same also applies for other buildings on campus, though several exceptions have now been made. The NanoLab, for instance, is home to a limited number of development activities that, due to their urgent nature, will be continued.

Three companies (Lionix, MedSpray and Micronit) are currently hard at work in the NanoLab, where they are developing devices that can be used to detect and help treat the coronavirus. To do so, they need access to the facilities in the NanoLab. In consultation with the faculties and with safety as our primary concern, MESA+ is constantly evaluating which activities can still take place in the NanoLab.

Lionix

Testing equipment is needed to detect the COVID-19 virus itself and to detect immunological biomarkers in the blood; rapid diagnostics that can be used to detect cases, monitor the clinical picture in patients and establishing immunity. Lionix devices are suitable to detect viruses in a ‘swab’ sample, as is common nowadays, and to analyse the course of the infection and immunity for the virus based on blood-borne biomarkers. Similar photonic devices, though with less sensitive biochips, are known to be able to detect viruses. Read more about Lionix.

MedSpray

Medspray is developing a device that can be combined with an inhaler or a ventilator to administer medication to a patient, which will also see the responsibility for administering medication shift from the supplier to the specialist. This technology has already been put into practice in collaboration with the Radboud hospital and, if proven effective, will be rolled out further.

Micronit

Micronit produces microfluidic products that make a crucial contribution to identifying the virus. Though they operate their own cleanroom, several process steps take place in the MESA+ Nanolab. Micronit initiated the Viralert Foundation, partnering up with businesses and knowledge institutions to develop tests for corona immunity. Read more about Micronit.

Research groups

Several research groups have now also come up with new corona and corona immunity tests and require access to the NanoLab for the development process. We are looking into ways in which the university and the NanoLab can support these developments without compromising on safety. For questions, please contact Gerard Roelofs, head of MESA + NanoLab. Read more about Micronit.

Source article: MESA+ news