Berichten

Professor Lieven Vandersypen (Foto: Studio Oostrum)

NWO heeft bekend gemaakt dat onze directeur Onderzoek Lieven Vandersypen de NWO-Spinozapremie krijgt toegekend. De Spinozapremie is de hoogste onderscheiding in de Nederlandse wetenschap. Elke laureaat ontvangt 2,5 miljoen euro, die zij kunnen besteden aan wetenschappelijk onderzoek en activiteiten op het gebied van kennisbenutting.

Lieven Vandersypen (1972) is Antoni van Leeuwenhoek professor in de Quantum-nanowetenschappen aan de TU Delft en wetenschappelijk directeur van QuTech. Vandersypen is een wereldwijd vermaard pionier op het gebied van quantum computing: de tak van wetenschap die een computer ontwikkelt gebaseerd op de ongerijmde fenomenen uit de quantummechanica.

Quantum computers zijn geschikt om rekenproblemen op te lossen die zelfs voor de beste supercomputers te omvangrijk zijn, zoals het uitrekenen van de eigenschappen van moleculen en materialen. Zo kunnen ze bijdragen aan grote maatschappelijke uitdagingen, van energie tot veiligheid en gezondheid. Lieven Vandersypen wil de meest fundamentele eigenschappen van de natuur bruikbaar maken en doet daarom al meer dan twintig jaar leidende experimenten die richting geven aan het veld van quantum computing.

Reeds tijdens zijn promotieonderzoek realiseerde Vandersypen zijn eerste wereldwijde primeur: hij gebruikte de zogeheten spins van atoomkernen in moleculen als qubits, de bouwstenen van een quantum computer, en wist met 7 van deze qubits het getal 15 te ontbinden in de factoren 3 en 5. Hiermee bewees hij dat het rekenen met qubits niet alleen theoretisch, maar ook in de praktijk mogelijk is.

Na zijn promotie is Vandersypen overgestapt van kernspins in moleculen naar de spins van elektronen in quantum dots, minuscule objecten van een halfgeleidermateriaal waarin de wetten van de quantummechanica de dienst uitmaken. Deze lijken in veel opzichten op transistors en zijn daarom geschikt om grote aantallen qubits in een chip te integreren. Hij wist als eerste ter wereld dit soort individuele elektronenspins te manipuleren, zowel met magnetische als met elektrische velden. Later was hij ook de eerste om quantum algoritmes op twee van die elektronenspins te draaien en om quantum interactie te laten zien tussen een elektronspin en een microgolf lichtdeeltje. Ook liet hij zien dat dezelfde quantum dots kunnen dienen om exotische vormen van magnetisme in te bestuderen.

Vandersypen is niet alleen een uitstekend wetenschapper, maar ook een visionair die zijn veld verder brengt door de samenwerking te zoeken met partners binnen en buiten de wetenschap. Zo stond hij mede aan de basis van het Delftse onderzoeksinstituut QuTech, een samenwerking tussen TU Delft en TNO, en overtuigde hij het Amerikaanse Intel ervan een langjarige samenwerking met QuTech aan te gaan. Daarnaast is Vandersypen een van de grondleggers van het demonstratieproject Quantum Inspire. Dit is de eerste Europese online quantum computer waarmee je twee verschillende soorten qubits vanuit je huis kunt aansturen.

Vandersypen is een veel gelauwerd wetenschapper wiens onderzoeksplannen zijn gehonoreerd met meerdere prestigieuze beurzen. Zo kreeg hij een Vidi en Vici premie, en ERC Starting Investigator, Synergy en Advanced Grants. Hij heeft veel ervaring met het leiden van grote groepen wetenschappers, ingenieurs, technici en ondersteunende staf en heeft een grote aantrekkingskracht op internationale studenten, promovendi en postdocs. Inmiddels hebben tien van zijn oud-groepsleden hun eigen onderzoeksgroep op prestigieuze instellingen over de hele wereld.

De Spinozacommissie is ervan overtuigd dat Lieven Vandersypen met zijn kwaliteiten, visie en drive gecombineerd met zijn uitstekende netwerk van academische en private samenwerkingspartners de komende jaren de volgende grote wetenschappelijke en technologische doorbraken zal kunnen realiseren die nodig zijn om de beloften van de quantum computer waar te kunnen maken.

Bron: NWO Spinoza premie
Lees meer in dit artikel van QuTech, Vandersypen is een van de oprichters van onderzoeksinstituut QuTech, een samenwerking tussen TU Delft en TNO.

22 juli 2021 – QuiX Quantum heeft vandaag de grootste universele quantumfotonische processor gepubliceerd.

In een wetenschappelijk artikel in Materials for Quantum Technologies bericht QuiX Quantum over ’s werelds grootste universele quantumfotonische processor, met uitstekende performance voor toepassingen in de quantuminformatieverwerking en -computing. Met dit artikel demonstreert QuiX Quantum de eerste commercieel beschikbare, turn-key processor voor fotonische quantumcomputing.

De resultaten uit het paper laten de unieke expertise van QuiX Quantum zien op het grensvlak tussen fotonica en quantum engineering, en de hoge mate van praktische toepasbaarheid van hun technologie. De expertise van Quix is beschikbaar in oplossingen voor het hele spectum van quantumtechnologieen.

Fotonische processoren zijn een cruciaal component voor fotonische quantum computing, wat weer een grote impact zal maken op machine learning, quantum scheikunde en cryptografie. De universele fotonische processor uit het paper zit ingebouwd in een plug-and-play controlesysteem dat gerund wordt door QuiX’ software.

De CTO van QuiX Quantum, Jelmer Renema, zegt: “Met dit artikel hebben we niet alleen laten zien dat we een leidende positie hebben in het commerciele landschap van fotonische quantum computing, maar ook in de technologische ontwikkeling van fotonische quantumtechnologieen.”

QuiX Quantum is een bedrijf uit Enschede, dat oplossingen levert voor quantumtechnologie gebaseerd op het TriPleX silicium-nitide platform. TriPleX stelt QuiX in staat om grootschalige fotonische circuits op te leveren met lage verliezen. De hoge mate van ontwikkeling van dit technologieplatform stelt QuiX in staat om een processoren met hoge mate van instelbaarheid en volledige verbondenheid te leveren.

Photo credit: Daniël Verkijk

Bron: Quix News

ZEISS honors outstanding quantum technology-based approaches to solving real-life problems and reinforces its scientific network.

  • Prof. Dr. Friedemann Reinhard from the University of Rostock and Dr. Gabriel Puebla-Hellmann from QZabre AG in Zurich have won the ZEISS Quantum Challenge 2020.
  • The aim of the challenge is to identify promising solutions in quantum technology, discuss them with other experts, and partner up in order to advance these ideas together.
The winners of the ZEISS Quantum Challenge 2020 have been chosen: Prof. Dr. Friedemann Reinhard, Professor of Quantum Technology at the University of Rostock, and Dr. Gabriel Puebla-Hellmann, CEO of QZabre AG in Zurich, impressed the expert judges with their ideas. ZEISS uses this prize to honor outstanding approaches to solving real-life problems in medical technology, microscopy and industrial metrology through quantum technology.

Problem-solving through quantum technology

“Quantum technology is being developed at an incredible pace and it offers untapped potential for future innovations in both business and science. The ideas submitted by the two winners offer promising solutions that could considerably advance the use of quantum technology in real-life applications and products,” says Dr. Max Riedel, Head of the ZEISS Innovation Hub @ KIT and judge for the ZEISS Quantum Challenge. The winners were announced at the QuApps conference on 2 March 2021 and presented their approaches to an audience of experts.

From scientific application to market-ready products

The idea behind the ZEISS Quantum Challenge is to make the leap in quantum technology, from scientific application in the lab to market-ready products. That’s because even though quantum technology is always maturing, it has not yet transitioned from the lab to industrial application. This prompted ZEISS to launch a competition dedicated to the use of quantum technology in sensor and imaging applications in real-life conditions. To do this, ZEISS called on the scientific community working in the area of quantum technology to tackle six real-life challenges in the following categories: medical technology, microscopy, and industrial metrology. The aim of the challenges was to identify promising solutions, discuss them with other experts, and partner up in order to advance these ideas together.

The winners of the ZEISS Quantum Challenge

Prof. Dr. Friedemann Reinhard, Professor of Quantum Technology at the University of Rostock, is one of the winners of the ZEISS Quantum Challenge 2020.

Prof. Dr. Friedemann Reinhard was honored for his idea regarding label-free 3D microscopy. The solution uses magnetic resonance imaging (MRI), instead of optical microscopy, to image small samples. It may sound far-fetched, but it could be doable by Nitrogen Vacancy (NV) centers (nitrogen defect centers in diamond). These have already shown that nuclear resonance signals from volumes of around 10 micrometers can be detected relatively quickly and easily. Using additional magnetic field gradients makes it possible to recreate an MRI scanner on a micrometer scale,” says Reinhard. This could then be used to examine nontransparent specimens in 3D. “It would also enable label-free imaging, e.g. by imaging the chemical shift. And it could image movements or diffusion.” It could be deployed in the life sciences. Another promising area would be battery research. Here, magnetic resonance spectroscopy is already being used on larger scales, and optical microscopy is not an option, since batteries are not transparent. Movements and diffusion are also of interest.

Dr. Gabriel Puebla-Hellmann, CEO of QZabre AG in Zurich, is one of the winners of the ZEISS Quantum Challenge 2020.

Dr. Gabriel Puebla-Hellmann was honored for his contribution to precise position and direction determination using quantum technology. At the heart of his solution are Nitrogen Vacancy (NV) centers – atom-sized, highly sensitive magnetic field sensors. “Because of their size, many NVs can exist in a small volume, creating a very sensitive magnetic field sensor on the sub-100 nanometer scale that determines both the value and direction of the field,” says Puebla-Hellmann. ” This sensor is special because it remains precise across more than six orders of magnitude, thus offering a much higher resolution for the same testing volume than other technologies.”

Our approach is particularly relevant for industrial metrology. For example, when manufacturing high-precision components, the dimensions have to be verified post-production. Our approach helps to make this step more precise – and potentially faster, too.

About ZEISS

ZEISS is an internationally leading technology enterprise operating in the fields of optics and optoelectronics. In the previous fiscal year, the ZEISS Group generated annual revenue totaling 6.3 billion euros in its four segments Semiconductor Manufacturing Technology, Industrial Quality & Research, Medical Technology and Consumer Markets (status: 30 September 2020).

For its customers, ZEISS develops, produces and distributes highly innovative solutions for industrial metrology and quality assurance, microscopy solutions for the life sciences and materials research, and medical technology solutions for diagnostics and treatment in ophthalmology and microsurgery. The name ZEISS is also synonymous with the world’s leading lithography optics, which are used by the chip industry to manufacture semiconductor components. There is global demand for trendsetting ZEISS brand products such as eyeglass lenses, camera lenses and binoculars.

With a portfolio aligned with future growth areas like digitalization, healthcare and Smart Production and a strong brand, ZEISS is shaping the future of technology and constantly advancing the world of optics and related fields with its solutions. The company’s significant, sustainable investments in research and development lay the foundation for the success and continued expansion of ZEISS’ technology and market leadership. ZEISS invests 13 percent of its revenue in research and development – this high level of expenditure has a long tradition at ZEISS and is also an investment in the future.

With over 32,000 employees, ZEISS is active globally in almost 50 countries with around 30 production sites, 60 sales and service companies and 27 research and development facilities. Founded in 1846 in Jena, the company is headquartered in Oberkochen, Germany. The Carl Zeiss Foundation, one of the largest foundations in Germany committed to the promotion of science, is the sole owner of the holding company, Carl Zeiss AG.

Further information at www.zeiss.com

(Nanowerk News) Researchers from Basel, Bochum and Copenhagen have gained new insights into the energy states of quantum dots. They are semiconductor nanostructures and promising building blocks for quantum communication. With their experiments, the scientists confirmed certain energy transitions in quantum dots that had previously only been predicted theoretically: the so-called radiative Auger process. For their investigations, the researchers in Basel and Copenhagen used special samples that the team from the Chair of Applied Solid State Physics at Ruhr-Universität Bochum had produced.
The researchers report their results in the journal Nature Nanotechnology (“Radiative Auger process in the single-photon limit”).

Lock up charge carriers

In order to create a quantum dot, the Bochum researchers use self-organizing processes in crystal growth. In the process, they produce billions of nanometer-sized crystals of, for example, indium arsenide. In these they can trap charge carriers, such as a single electron. This construct is interesting for quantum communication because information can be encoded with the help of charge carrier spins.
For this coding, it is necessary to be able to manipulate and read the spin from the outside. During readout, quantum information can be imprinted into the polarization of a photon, for example. This then carries the information further at the speed of light and can be used for quantum information transfer.

This is why scientists are interested, for example, in what exactly happens in the quantum dot when energy is irradiated from outside onto the artificial atom.

charged exciton

Schematic representation of a charged exciton, i.e. an excited state consisting of two electrons and one hole within a quantum dot. (Image: Arne Ludwig)

Special energy transitions demonstrated

Atoms consist of a positively charged core which is surrounded by one or more negatively charged electrons. When one electron in the atom has a high energy, it can reduce its energy by two well-known processes: in the first process the energy is released in the form of a single quantum of light (a photon) and the other electrons are unaffected.
A second possibility is an Auger process, where the high energy electron gives all its energy to other electrons in the atom. This effect was discovered in 1922 by Lise Meitner and Pierre Victor Auger.
About a decade later, a third possibility has been theoretically described by the physicist Felix Bloch: in the so-called radiative Auger process, the excited electron reduces its energy by transferring it to both, a light quantum and another electron in the atom.

A semiconductor quantum dot resembles an atom in many aspects. However, for quantum dots, the radiative Auger process had only been theoretically predicted so far.
Now, the experimental observation has been achieved by researchers from Basel. Together with their colleagues from Bochum and Copenhagen, the Basel-based researchers Dr. Matthias Löbl and Professor Richard Warburton have observed the radiative Auger process in the limit of just a single photon and one Auger electron. For the first time, the researchers demonstrated the connection between the radiative Auger process and quantum optics.
They show that quantum optics measurements with the radiative Auger emission can be used as a tool for investigating the dynamics of the single electron.

electron

An electron inside a quantum dot is raised by a photon (green waveform) to a higher energy level. The result is a so-called exciton, an excited state consisting of two electrons and one hole. By emitting a photon (green waveform), the system returns to the ground state (green path). In rare cases, a radiative Auger process takes place (red arrow): an electron stays in the excited state, while a photon of lower energy (red waveform) is emitted. (Image: Arne Ludwig)

Applications of quantum dots

Using the radiative Auger effect, scientists can also precisely determine the structure of the quantum mechanical energy levels available to a single electron in the quantum dot. Until now, this was only possible indirectly via calculations in combination with optical methods. Now a direct proof has been achieved. This helps to better understand the quantum mechanical system.
In order to find ideal quantum dots for different applications, questions such as the following have to be answered: how much time does an electron remain in the energetically excited state? What energy levels form a quantum dot? And how can this be influenced by means of manufacturing processes?

Different quantum dots in stable environments

The group observed the effect not only in quantum dots in indium arsenide semiconductors. The Bochum team of Dr. Julian Ritzmann, Dr. Arne Ludwig and Professor Andreas Wieck also succeeded in producing a quantum dot from the semiconductor gallium arsenide. In both material systems, the team from Bochum has achieved very stable surroundings of the quantum dot, which has been decisive for the radiative Auger process. For many years now, the group at Ruhr-Universität Bochum has been working on the optimal conditions for stable quantum dots.

Source: Ruhr-Universität-Bochum via Nanowerk news

Evenementen

Quantum future: Opportunities for microsystem technology – Micro Nano Symposium

In 2021 and 2022, MinacNed will host pre-events leading up to the international MicroNanoConference 2022. The symposia are live events in The Netherlands, offering an interesting program with speakers from industry and science, with an opportunity for networking.

Are you interested in the opportunities for micro- nanotechnology in quantum technology? Minacned organizes a MicroNano Symposium on this topic on March 29. Speakers from Quantum photonic SME’s and academia will present the challenges in their quantum application and what chances for micro- and nanosystem technology they see. This live event will be organized in collaboration with the RF Event from FHI at Qu-Tech/TU Delft. The attendees of both events are free to meet and network during the break and drinks.

Date:              March 29
Location:       TU Delft, Mekelweg 5, 2628 CC Delft

Preliminary program

13:00-13:30 Arrival with coffee/tea

13:30-13:35 Opening by Douwe Geuzebroek, Lionix International
13:35-13:50 Qutech “Introduction of Quantum Delta”

13:50-14:15 Caterina Taballione, Quix Quantum “Quantum processing using integrated photonics”
14:15-14:40 Prof. Florian Schreck, Universtity of Amsterdam “Opportunities in Quantum Sensing”

14:40-15:00 Coffee Break

15:00-15:25 Prof. Val Zwiller, TUDelft and Chief Scientific Officer Single Quantum “Challenges in single photon detection”
15:25-16:00 Open table discussion on opportunities in quantum for microsystem companies, with speakers and moderator Douwe Geuzebroek

16:00-17:00 Combined networking drinks with RF Event

Invited keynote speakers include industry and science partners, the moderator is MinacNed board member Douwe Geuzebroek from Lionix International B.V.  After these great talks, the inspired attendees can meet and greet in a network setting with drinks to formalize future partnerships. The event is  a live event in Delft, at the TU Delft.

We look forward to seeing you here. You can register now (free) with the form below.
Please note! We have limited seats for this event. If you have registered, but cannot attend please inform the team in advance via email.

Read more about the RF Event here.

Join the Micro Nano Symposium by sending an email to: joost@fhi.nl

 

This network activity is partly financed from the MIT subsidy scheme for TKI SME reinforcement via the TKI HTSM

 

On 19 November QuTech is launching World’s first Quantum Network Explorer platform! >>Join our online launch event and accelerate your quantum internet journey!

Experience the Quantum Network Explorer platform, get hands-on and explore applications of quantum networks, and get inspired by the leading academics’ and the latest generation of innovators with a showcase of the work that will transform the future of the internet!

Our online launch event will take place on November 19, 2021, between 15:30 – 17:00 CET.

More news to come in the next few weeks (including a line-up of amazing speakers) so stay tuned and save the date!

We look forward to seeing you at #QNE2021!