Berichten

Er wordt hard gewerkt aan vaccins die we begin volgend jaar verwachten. Hoe krijgen we die dan snel, zorgvuldig en verantwoord van ‘lab to life’? Heb jij de oplossing voor deze uitdaging?

De coronacrisis duurt voort. Strenge maatregelen in combinatie met verschillende innovatieve oplossingen zijn nodig. Zowel technologische als sociale innovatie, veelal geïntegreerd, dragen bij aan noodzakelijke en gewenst oplossingen.

In Nederland is veel ervaring met vaccinatieprogramma’s (zie hiervoor bijvoorbeeld www.rijksvaccinatieprogramma.nl). De organisatie van vaccinatieprogramma’s is gedeeltelijk centraal belegd, en gedeeltelijk decentraal. Sommige programma’s, zoals de griepvaccinatie, bereiken een schaal van enkele miljoenen gevaccineerden. De schaal waarop het coronavaccin moet worden verspreid beslaat heel Nederland! Bij voorkeur ook een groot deel van de bevolking. Het moet in een zo kort mogelijke periode gebeuren. Tegelijkertijd is robuustheid van activiteiten en informatievoorziening tijdens het vaccinatieprogramma welhaast de allerhoogste prioriteit. Naast verspreiding is dus ook de appreciatie, acceptatie en nauwkeurigheid van de operatie van groot belang, maatschappelijk en economisch.

Dit stelt ons voor een grote logistieke en humanitaire uitdaging.

De Topsectoren Creatieve Industrie, Logistiek, ICT en LSH willen graag de Nederlandse technologische en sociale kennis- en innovatiecapaciteiten activeren voor dit cruciale vraagstuk. We leggen daarom deze kennis- en innovatie-uitdaging neer bij de Nederlandse kennisinstellingen.

De vraag

Ontwerp een integrale logistieke en creatieve oplossing voor een corona-vaccinatieprogramma waarmee snel, zorgvuldig, verantwoord en nauwkeurig in potentie 95% van de bevolking in Nederland kan worden ingeënt.

Randvoorwaarden

Houd rekening met geldende coronamaatregelen en -regels ten aanzien van afstand, groepsgrootte en -diversiteit, looprichtingen, enzovoort. Houd ook rekening met verschillende appreciaties en acceptaties in onze bevolking.

Neem in acht dat de logistieke operatie en de sociale acceptatie ook vragen om informatietechnologische, gezondheid-gerelateerde en social- en servicedesign ingrepen; die gezamenlijk tot de integrale oplossing moeten leiden.

Sommige vaccins vragen een inenting, en sommige twee. Geef duidelijk aan voor welke optie je oplossing is ontworpen.

Houd rekening met de condities waaronder het vaccin vervoerd en opgeslagen dient te worden. In de meeste gevallen zal een vaccin diepgevroren vervoerd en opgeslagen dienen te worden voor een langere levensduur.

Ga ervan uit dat er uiteindelijk voldoende vaccins zullen zijn. Deze vaccins komen binnen op een centrale plek in Nederland. Het verdient aanbeveling om een of meerdere scenario’s te gebruiken voor de fasering van de beschikbaarheid en de acceptatie van het vaccin in de beantwoording van de uitdaging.

Het internationale vervoer van de vaccins is geen onderdeel van deze challenge. Voor transport en opslag van en naar Nederland wordt logistieke kennis al aangewend in een brede taskforce op initiatief van Schiphol, KLM Cargo, Air Cargo Netherlands en TLN (de Task Force Transport en Opslag Covid 19 Vaccin).

Er is een korte termijninspanning aan de gang voor de vaccinatie tegen Covid-19. Dit proces staat onder grote druk, en succes is cruciaal voor onze maatschappij. Het is niet wenselijk om de overheidspartijen, zoals het RIVM, die hierbij betrokken zijn te raadplegen voor deze uitdaging.

We verwachten dat je kwantitatief aantoont dat je oplossing ook daadwerkelijk functioneert en de beloofde prestatie – 95% – haalt.

Waardering

De betrokken topsectoren zullen zich inspannen om de beste drie ontwerpvoorstellen in te brengen in de lange termijn planning voor pandemieën van de Nederlandse overheid. Daarnaast stellen de TKI’s ClickNL, Dinalog, ICT en LSH een bedrag beschikbaar van € 10.000 voor de eerste prijs, en twee maal € 5.000 voor twee tweede prijzen. Binnen de topsectoren zal aan deze uitdaging, de prijsuitreiking, en het aanbieden van de oplossingen via haar gebruikelijke mediakanalen ruimschoots aandacht worden besteed.

Indiening en beoordeling

Deze kennis- en innovatie-uitdaging kent 2 stappen. In de eerste stap vragen we naar de voorlopige aanpak en samenstelling van het kennisconsortium. We stellen hier geen eisen aan, zoals betrokkenheid van private partijen. De deadline voor deze eerste stap is 1 december 2020 om 23:59 uur via het emailadres projecten@dinalog.nl.

De voorstellen zullen worden beoordeeld op kans rijkheid en kennisbijdrage. De desbetreffende aanvragers zullen worden uitgenodigd om hun aanpak uit te werken en in te dienen. De deadline voor deze tweede indiening, in de vorm van een logistiek ontwerp met bijbehorende documentatie, is 31 januari 2021 om 23:59 uur via het emailadres projecten@dinalog.nl

De kwaliteit van ingediende ontwerpen wordt door een onafhankelijke, ter zake deskundige, jury beoordeeld.

De beoordeling zal bekend worden gemaakt op 15 februari 2021 via de website van TKI de TKI’s ClickNL, Dinalog, ICT en LSH.

Overige informatie:

Bron: Topsector Energie

A consortium of companies from Twente can count on one million Euro funding from the European Union and the province of Overijssel to develop a rapid test to detect viruses such as corona.

D’Andrea and Evers Desgin from Enter, Holland Innovative and Micronit Microtechnologies from Enschede, Elect High-Tech Electronics from Weerselo and NYtor from Nijmegen will receive a subsidy of over 1.1 million euros from the EU and the provinces of Gelderland and Overijssel. The total costs amount to almost 2.8 million euros.

The companies are developing a “lab-on-a-chip detection platform” in the so-called VIRAPOC project. With modern technologies such as nanotechnology, life sciences, semiconductor and photonics, a virus can be quickly recognized. The method can be used in major virus outbreaks such as the current corona pandemic.

Prevent home quarantine

Rapid detection of a virus is very important to prevent further spread. It is also important to be able to track down people who carry the virus, but who show little or no symptoms of disease. A quick test can also prevent unnecessary and lengthy isolation or home quarantine.

This reduces the impact of local virus outbreaks for both the economy and the individual. “The project makes an important contribution to combating the consequences of major virus outbreaks and limiting the social and economic effects,” said Eddy van Hijum, Provincial Executive of the Overijssel province.

Direct reuse of wastewater

Another Overijssels project is also financially supported with 1.1 million euros. It concerns the NANOX project, which may eventually be a solution to the drinking water issue in Overijssel. It focuses on the direct reuse of (treated) wastewater as drinking water, or an equivalent application, so that no or much less groundwater needs to be used.

The innovation of this project lies in the combination of the “Hollow fiber nanofiltration” and “Advanced UV” technology. The combination of these techniques, developed by the partners themselves, leads to a greatly improved and sustainable water treatment process for wastewater from sewage treatment plants, or polluted surface water. The companies working on this are: NX Filtration (Enschede), Jotem Water Treatment (Vriezenveen), Van Remmen UV (Wijhe), Demcon (Optiqua) (Enschede) and Saxion (Enschede).

In addition to the Overijssel projects, two Gelderland projects have also been awarded funding in the field of innovative potato cultivation and electric ground drilling machines.

Source: Tubantia, news

On September 23rd the first of the five pre-meetings will take place, leading up to iMNC2020. This event is about lessons learnt from public-private collaboration in times of a pandemic crisis.

Public Private Collaborations – Lessons learnt in times of pandemic collaboration
How to involve SME’s and address their interests

The first pre-iMNC2020 meeting will take place on September 23 2020 in a virtual conference room. During this session, Prof Maarten Honing (Maastricht University) will invite 2 keynote speakers from industry and science to discuss their own experience in collaborating on public-private partnerships in times of COVID-19 pandemic.

What are the lessons learnt from projects where SME’s, scientists and large industry partners work together to find solutions for the medical and societal problems caused by the global pandemic?

The keynote from industry is Ronny van ‘t Oever, Micronit and the Viralert Initiative. He will be joined by a keynote speaker from science. The keynotes, who will be interviewed for a Q&A after their talk by Prof Maarten Honing will discuss their own experience and their vision on future collaborations.

September 23, 2020
Online meeting via iMNC2020 ichair
16:30-18:00 hrs

Register now!

By Maarten Buijs, from PhotonDelta

What are Photonic Integrated Circuits?

Electronics versus Photonics

Where electronics deals with the control of electrons on a chip, photonics does the same with photons. It covers the physics, engineering, technology and applications of light (photon) generation, detection, and manipulation through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photons travel at the speed of light and move through certain materials with almost no loss. Photonics can have a very high frequency range, resulting in high data throughput at a fraction of the energy costs of electronic circuits.

Adopting photons to carry signals over low-loss optical fiber transmission lines, and so replacing coaxial cables in telecommunication systems, led to the first significant business where photonics was applied. [1]

Integrated Photonics

Just as electronic functions can be integrated into an electronic integrated circuit (IC), photonic functions can also be integrated into a photonic integrated circuit (PIC). Building on the success of silicon (Si) as the basis of the IC revolution, silicon photonics (SiPh) has become an important part of the integrated photonics development.

Si is transparent to infrared light with wavelengths above about 1.1 micrometers, so also to the 1.55 micrometer wavelength used by most fiber optic telecommunication systems. In addition, it has a very high refractive index, of about 3.5, much higher than that of silicon oxide (1.5), which allows strong confinement of light in Si structures embedded in silicon oxide (waveguides). These properties make Si well suited for usage in telecom. However, Si does not allow direct generation of light. Indium phosphide (InP) does not have this restriction, because it has a direct semiconductor bandgap. So, PICs based on the InP material platform became commercially very successful; InP integrated photonics has been a critical enabler for modern telecommunications.

A photonic circuit. Image: LioniX International 

InP allows for the integration of active and passive elements like high-performance amplifiers, lasers, modulators, and detectors in combination with interferometers within one chip in the 1.1 – 1.6 mm spectral window. This leads to performance advances, energy savings and cost reductions,[2] which has allowed InP integrated photonics to revolutionize data communications, precision metrology (for example LIDAR in autonomous vehicles), spectrometry, and imaging. Current state-of-the-art devices integrate hundreds of functions onto a single chip.

Another material system making strong inroads into integrated photonics is silicon nitride (SiN). It excels at passive light processing in the visible, near-infrared (NIR) and IR range thanks to among others its very low light intensity loss in the waveguide, small bend radii and adjustable polarization. Waveguides guide light on integrated devices but can also perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals.

By integrating SiN PICs with active components based on other technologies like InP, high performance photonics Systems-in-Package devices can be manufactured.

Biosensors based on the SiN platform explained

One of the photonic industries key application areas concerns biosensors based integrated photonic circuits. SiN PICs are in particular very well suited for the detection of biological molecules. They work in a very wide wavelength range from visible to near-infrared, avoiding the water absorption window of water and allowing fluorescence detection. Also, this wavelength range makes it easy to combine them with a cheap laser source.  The small bend radii possible in SiN allow the light-constraining waveguide to be ‘’rolled up” on the surface, creating a very long light path. In combination with the ultra-low loss of propagating light in SiN, this leads to a long interaction time of the light with biomolecules that are in the vicinity of the surface. Biosensors based on SiN PICs are thus highly sensitive. A very low detection limit can be achieved by using self-referencing optical structures which eliminate sources of noise like temperature variations.

Biosensors are or will be applied in a multitude of areas, like towards health-related targets (e.g. glucose monitoring in diabetes patients, early detection of the onset of cancer or of infectious diseases), environmental applications (e.g. the detection of pesticides and pollutants), and the food industry (e.g. determination of antibiotics or hormone residues in food, early detection of infectious diseases).

Benefits of photonic biosensors

Biosensors work by detecting so-called analytes, in this case, biomolecules or biomarkers, which in the case of human health care indicate whether a condition like cancer or an infection is present. Typically, the analyte is detected in a sample of bodily fluids like blood, urine, or sputum. These analytes are detected by being captured by so-called bioreceptors, which can be antibodies, nucleic acids, proteins, pathogens, or even created by biological engineering. In their turn, bioreceptors are typically bound covalently (or by the sharing of electron pairs between atoms) to the surface of the waveguide. The bioreceptors are the conjugate to a particular analyte and therefore very selective.  By applying an anti-fouling layer on the non-waveguide surface of the chip, one can assure that the bioreceptors are only bound to the SiN waveguide and not to adjacent areas of the surface. This biomarker-specific attachment to the waveguide brings the biomarkers very close to the surface of the waveguide. It also implies that additional (e.g., fluorescent) labeling of the biomarker is not needed. Being able to do label-free direct detection significantly simplifies the detection workflow.

The optical working principle of the detection is based on the fact that part of light which travels through the waveguide (at very low loss in SiN) sticks out of the waveguide, to so-called evanescent field. In the case of SiN this field contains a significant part of the total light intensity. The bioreceptor – biomarker couple on the surface of the waveguide changes the effective refractive index of the waveguide. By making use of waveguide interferometers or resonators, these refractive index changes can be translated into a quantitative assessment of the biomarker.

Also, because of the low bend radii possible in SiN, these structures can be designed very compactly and many such structures can be fitted onto the surface of a single chip. By tuning the analyte deposition, different waveguide structures can be covered with different bioreceptors, called multiplexing, so that multiple biomarkers can be detected on the same chip. This can enhance the sensitivity towards either one difficult-to-detect biomarker or towards one health condition with several characteristic biomarkers. It can also be used to measure several health conditions with one single chip.

Increasing rapid point of care testing

In the past, testing of patient samples for biomarkers was centralized at large hospitals or community laboratories in order to improve cost-effectiveness, to cope with economic pressure, and to reduce health care costs. This resulted in higher effectiveness and high-quality analytical results. However, the need for a rapid turnaround time and the “permanent” availability of local general practitioners not only during the day but also on nights and weekends has increased the need for more decentralized diagnostic approaches such as the point-of-care testing (POCT) occurring at the patients’ bedside, in operation theatres, in emergency rooms, and at accident sites.[3]

The introduction of widespread point-of-care testing of patients for diagnosis as well as screening can be significantly accelerated by combining the extreme sensitivity and selectivity of the SiN biosensor technology with the possibilities to mass produce the SiN PICs with processes, technologies and equipment derived from those used to mass manufacture electronic integrated circuits. Active components like light sources (to generate the sensing light) and detectors (to register the change of the sensing light induced by the biomolecules) cannot be made out of SiN. Therefore, integration of very small and cheap commercially available light sources (e.g. Vertical-Cavity Surface-Emitting (VCSEL) lasers) and detectors needs to be done as a step in the production process of the biosensor.

How The Netherlands and PhotonDelta work on accelerating development of Integrated Photonics

With two centers of excellence covering the important technologies for integrated photonics, and a long history of successful contributions to the integrated electronics industry like ASML, NXP and ASM International, the Netherlands is uniquely positioned to play a strong role in the continuously growing area. This drive is orchestrated by PhotonDelta, a Dutch public-private partnership consisting of a cohesive cluster of companies and highly qualified knowledge institutes, set up to accelerate and reduce time to market of integrated photonics products. PhotonDelta strengthens the ecosystem from within by stimulating and facilitating co-operation amongst the integrated photonic companies and knowledge institutions, developing the common business strategy, setting goals and stimulating co-operation between partners in the Netherlands and beyond. PhotonDelta acts as a growth accelerator and so helps to amplify and scale existing companies and kickstart new ones by having access to significant funding.

Notable academic centers of excellence of photonic integrated circuits in InP are the University of California at Santa Barbara, USA, and the Eindhoven University of Technology in the Netherlands. In Eindhoven, the technology is commercialized through the company SmartPhotonics. Important European academic centers of excellence for SiN PiC technology include EPFL at Lausanne, Switzerland and the University of Twente in Enschede, the Netherlands. The technology is commercialized through the companies Lionix International in the Netherlands and Ligentec in Switzerland.

How the PhotonDelta ecosystem works on biosensors

With support from PhotonDelta, Lionix has teamed up with fellow Dutch company Surfix, who specialize in nanocoatings for life science applications and Qurin, diagnostics specialists to develop  SiN PIC-based biosensors for the direct detection of the SARS-CoV-2 virus responsible for COVID-19. The group is aiming for a quick and reliable POCT that removes the need for time-consuming lab work. Two tests are under development, one that will determine if a patient is currently infected by the virus by detecting virus receptors.  The second test will determine if a patient has already been infected by the virus by detecting antibodies – the proteins produced by the immune system in response to infection.

The biosensor will detect the receptors for the virus, detecting the virus directly rather than using the current common method which involves destroying the virus’s shell and looking for the presence of released genetic material. This direct detection means results can be returned with speed, possibly even with a few minutes. Both tests are expected to be readily available within 6-9 months. An important part of this initiative will be to set up the infrastructure for mass-producing very reliable disposable biosensors. The long-standing partnership between the key players in this initiative means the groundwork has already been laid for rapid product development and rollout. When successful, this initiative will not only contribute to the fight against COVID-19, but will also have established SiN PIC technology as a platform for the further roll-out of POCT for screening and diagnosis.

Conclusion

Integrated Photonics based biosensors will advance the roll-out of point-of-care diagnostics. Further development of the technology should deliver more sensitive and more accessible biosensors for rapid diagnosis. This development will be driven, in part, by strategic collaboration between industry leaders, innovators, and health care organizations.

This is one of a series of articles discussing photonics based biosensing and the work of PhotonDelta and its partners. Future articles will include reporting on the current and long-term application of the technology for tackling Covid-19 and other point of care testing applications, as well as detail PhotonDelta’s roadmap towards high volume production of disposable biosensors.

Read the original article here

Image credit Lionix International

NOCI Blog by Dennis Nahon NOCI PhD-student at LUMC

The COVID-19 pandemic is having a huge impact on every aspect of our lives. From the burden on our personal life to the restrictions it has put on our working life. We, as Organ-on-Chip (OoC) researchers haven’t been spared and most of us have only been able to show off our practical skills in alternative forms. While this has probably resulted in the creation of beautiful cakes and unlocking of legendary achievements on the PlayStation, it has not been the societal impact we were looking for. Having said this, it hasn’t been a surprise to see a range of initiatives regarding COVID-19 research from our OoC field. In this way, supporting the millions of people worldwide suffering from the virus and as a bonus proofing its added value to the scientific spectrum.

Within the NOCI-consortium, several labs have already made the effort to accommodate COVID-19 research while complying to the strict safety regulations set by the government. The Clevers group used their human small intestinal organoids to demonstrate that the SARS-CoV-2-virus can replicate in intestinal epithelial cells. The University of Twente is setting up a collaboration with the University of Leiden and University of Nijmegen to develop a platform to study COVID-19 in their heart-on-chip and lung-on-chip model.

In the meantime, the University Medical Center Groningen is setting up a collaboration between their geneticists and virologists to study the effect of COVID-19 patient plasma on endothelial cells. Looking beyond our consortium, there have been several OOC groups repurposing their tools to study COVID-19. One example is the combined effort of the National Research Council of Canada and the University of Toronto. Here they are adapting the previously established models in the lab of Milica Radisic, to study the interaction between the virus and various epithelial barriers such as nose, mouth, eyes and lung. Furthermore, there is a great effort from the Wyss institute, led by Donald Ingber, to demonstrate the applicability and flexibility of OOC models. Their recent preprint in BioRxiv shows great promise in the application of their lung-on-chip model in gaining knowledge about the virus and testing the efficacy of potential drugs.

Overall, it will still be an alien world for some time to come. A new way of working for everyone, adjusting to new regulations and protocols to keep our society healthy. Amongst this, the OoC research is an inspiring example of trying to make the most out of difficult times.

Additional reading

Source: NOCI, The Netherlands Organ-on-Chip Initiative project

NOCI logo

Heeft u een klein bedrijf en heeft u door een coronacrisis een relatief kleine financieringsbehoefte van € 10.000 tot € 50.000? Dan kunt u misschien in aanmerking komen voor de Kleine Kredieten Corona garantieregeling (KKC).

De lening is er voor bedrijven die voor de coronacrisis voldoende winstgevend waren en die zijn ingeschreven bij de KVK vóór 1 januari 2019.

Wat houdt het overbruggingskrediet in?

Onder de KKC-regeling kunnen ondernemers bij hun financier een lening aanvragen van minimaal € 10.000 en maximaal € 50.000. De looptijd is maximaal 5 jaar, en de rente bedraagt maximaal 4%. Daarnaast betalen ondernemers aan de staat een eenmalige vergoedingspremie van 2%. Het krediet dient ter financiering van het geleden of te verwachten verlies als gevolg van het coronavirus.

Budget

Het totale garantiebudget van de KKC is € 750 miljoen. Hierbij staat de overheid garant voor 95% (€ 713 miljoen). Financiers dragen de overige 5% van het risico.

Waar kunnen ondernemers terecht?

Ondernemers die gebruik willen maken van een lening onder de KKC-regeling melden zich bij hun kredietverstrekker, bijvoorbeeld hun bank. Financiers die deelnemen aan de KKC zijn dezelfde als de financiers die deelnemen aan de BMKB. Ook financiers die geaccrediteerd zijn voor de BMKB-C kunnen de regeling aanbieden. Overige financiers hebben de mogelijkheid om zich via de eerder genoemde BMKB-C te laten accrediteren.