Berichten

In een door NWO gesteunde publiek-private samenwerking werkten meetapparatuurspecialisten Bronkhorst en Krohne samen met de technische universiteiten van Delft en Twente om debietmeters naar de volgende generatie te brengen. Hun doel: nieuwe en innovatieve meters ontwikkelen die realtime inzicht en analyse van stromende media kunnen bieden, allemaal zonder de stroom te hoeven onderbreken.

Auteur: Collin Arocho, Bits & Chips
Foto: An ultrasonic flow meter installed on a customer setup. Credit: Bronkhorst

In all high tech industrie wordt gewerkt aan manieren om gegevens te verzamelen en analyses te gebruiken om het meeste uit hun producten te halen. Volgens de experts van Bronkhorst High-Tech en Krohne Altometer beweegt de markt voor stroommetingen onvermijdelijk in dezelfde richting. “We willen meer kunnen meten dan alleen de mediumstroom door een buis. We willen het debiet en andere parameters zoals dichtheid, viscositeit en andere betekenisvolle grootheden meten ”, legt Joost Lötters, wetenschappelijk medewerker bij Bronkhorst, uit.

In de industrie heeft Lötters zich meer dan twintig jaar gericht op het ontwikkelen van massastroommeters die worden gebruikt voor het meten en regelen van de stroom van vloeistof en gas voor een verscheidenheid aan toepassingen in laboratoria, machines, industriële en gevaarlijke gebieden. Naast deze “dagbaan” bij Bronkhorst is hij parttime hoogleraar microfluïdische handlingsystemen aan de technische universiteiten (TU’s) in zowel Delft als Twente. Dit betekent dat hij als het gaat om kennis van de markt voor meetapparatuur, de eisen van de klant goed begrijpt, evenals de technologische innovaties die nodig zijn in het domein.

In 2014 kreeg Lötters lucht van het stimuleringsprogramma voor partnerschapsonderzoek via de Nederlandse Onderzoeksraad (NWO), waarbij de raad fondsen, van 3-10 miljoen euro, zou matchen om publiek-private samenwerkingsprojecten te ondersteunen. Met voorkennis van de onderzoeksmogelijkheden bij de TU’s, nam hij contact op met zijn collega’s bij Krohne om het ontwikkelingsproces van de volgende generatie flowmeters te begeleiden in een programma genaamd ‘Flow +’ – gericht op het verzamelen en benutten van waardevolle gegevens om klanten meer te geven inzicht en kosten verlagen.

Onderzoekers werden uitgenodigd om voorstellen in te dienen over hoe hun idee in het programma zou passen. “We hebben de voorstellen bekeken door de lens van de technologiegereedheidsniveaus van NASA”, zegt André Boer, de algemeen directeur van Krohne. “Universiteiten werken doorgaans tot niveau 3 of 4, de fase van een proof-of-concept of functioneel model. Voor Flow + wilden we iets geavanceerder: we wilden naar TRL 6, een volledig functioneel en verplaatsbaar model, met de ambitie om het helemaal naar niveau 9 te brengen – missiesucces. We wilden onze expertise gebruiken om de onderzoekers te helpen de kloof te overbruggen en om uit de eerste hand ervaring op te doen uit de industrie, maar ook om onze producten op de markt te krijgen. ”

Ultrasonic

De medewerkers ontvingen in totaal 18 inzendingen van projectontwerpen. Vier voorstellen haalden de laatste ronde. Nu, een paar jaar later, zijn twee van de projecten al gerijpt tot TRL 5. De eerste is een ultrasone flowmeter, afkomstig van de TU Delft. Door dit kleine apparaat aan een buis te klemmen, gebruikt het systeem geluidsgolven om de stroom binnenin te penetreren en te meten, waarbij waardevolle informatie wordt verzameld, zoals de buisdiameter, wanddikte en snelheid van de vloeistof.

“Hiervoor is een zeer intelligent systeem vereist dat zichzelf automatisch kan kalibreren in elke omgeving”, zegt Jankees Hogendoorn, algemeen directeur van Krohne’s New Technologies Group. “In deze opstelling gebruikt het systeem een ​​gefaseerde reeks transducers – een groep sensoren – om de akoestische straal naar specifieke punten en specifieke vlakken te sturen om informatie te verzamelen over een volledige doorsnede van de buis. Hierdoor kunnen we waardevolle gegevens verzamelen en de stroomsnelheid van punt naar punt bepalen zonder dat we in de leiding hoeven te snijden. ” Dit betekent dat eindgebruikers niet alleen nauwkeurigere analytische gegevens ontvangen dan ooit tevoren, maar ook de gezondheid en stabiliteit van pijpleidingen kunnen bewaken terwijl ze een snellere installatie realiseren met minimaal risico op lekken en een verlaging van de totale kosten.

“Ik werk al 35 jaar bij Krohne en we zijn al heel vroeg begonnen met het ontwikkelen van ultrasone flowmeters, omdat dit een van onze grootste wensen was”, zegt algemeen directeur Boer. “Hoewel de ideeën er waren, als het erom ging zo’n tool te produceren – vergeet het maar. De technologie die door de TU Delft wordt ontwikkeld, bestond twintig of dertig jaar geleden nog niet. Mede daarom is deze samenwerking met de TU’s in onze ogen zo’n succes. Via dit programma hebben we gebruik kunnen maken van de laatste ontwikkelingen en hebben we next-gen technologie kunnen realiseren.”

Flow+ PhD student werkt aan de micro Coriolis flow sensor in het lab van de UT. Credit: Flow+

Coriolis

Het tweede van de meest geavanceerde projecten is de thermische geluidsbeperkte Coriolis-stroommeter, een samenwerking tussen de TU’s van Delft en Twente. Een stromingssensor van het Coriolis-type bestaat uit een trillende buis waardoor een vloeistof stroomt. De bewegende massa van de vloeistof resulteert in Coriolis-krachten die inwerken op de trillende buis die kunnen worden gedetecteerd en gebruikt om te bepalen hoeveel stof er per seconde passeert. Bij het meten van gassen kan het echter een beetje lastig zijn vanwege hun lage dichtheid – wat betekent dat er veel druk nodig is om de gasstroom door de buis te duwen.

“Door een inline-oplossing te creëren, kunnen we alle relevante gegevens verzamelen en ervoor zorgen dat de high-throughput-processen in realtime kunnen worden gecontroleerd en aangepast, waardoor de downtime van het systeem wordt beperkt”, legt Lötters uit. “Bij Bronkhorst zijn we gespecialiseerd in het toepassen van het Coriolis-principe voor ultralow liquid flow rates en willen we dit principe voor het meten van gasstromen verbeteren. Maar om dat te doen, moeten we de signaal-ruisverhouding van het apparaat drastisch verbeteren, aangezien de massastromen voor gassen veel lager zijn dan die voor vloeistoffen vanwege hun lagere dichtheden. ”

Om een ​​oplossing te vinden, heeft Twente de rol op zich genomen om de gevoeligheid van de sensoren te verbeteren om lagere stromen te meten. Ondertussen heeft Delft de elektronica die wordt gebruikt om het geluidsniveau te verlagen, verbeterd. Na een paar iteraties van in-house ontwikkeling, is dit team dicht bij het realiseren van een aangepaste ASIC-chip die zal worden geïntegreerd met de verbeterde sensor uit Twente op weg naar een marktwaardig product.

Printplaat met de micro Coriolis flow sensor chip in het midden gemonteerd. Credit: Flow +

Plus

“Het bewijs van de pudding zit in het eten, dus we moeten nog zien hoe het allemaal integreert, maar ik zou deze samenwerking een succes willen noemen”, zegt Lötters. “Er zijn nog steeds enkele vragen die we aanpakken terwijl we door de technologische paraatheidsniveaus gaan. Maar onze visie om ‘flow plus iets anders’ te meten wordt gerealiseerd. Nu meten we de stroom. Vervolgens meten we het debiet plus hoeveelheden zoals dichtheid, viscositeit en warmtecapaciteit. Ten slotte gaan we naar herkenning van gassen, vloeistoffen en bepaling van de samenstelling van gas- en vloeistofmengsels, bijvoorbeeld door een machine-learning component toe te voegen. Het is een stapsgewijs proces, maar dat is de richting die we gaan. ”

In termen van toekomstige toepassing van de Flow + -oplossingen zijn de marktmogelijkheden behoorlijk divers. “Toepassingen van deze systemen variëren van medische oplossingen zoals het meten van de samenstelling van medicijnmengsels van multi-infusie-opstellingen in ziekenhuizen en voedingstoevoer en afvalafvoer in organ-on-a-chip-systemen tot het meten van de energie-inhoud in mengsels van brandstofgassen of onderzoek naar katalysatoren en recepten voor het effectief winnen van olie uit bronnen in de olie- en gasindustrie en vele andere ”, illustreert Lötters. “Al deze industrieën zijn afhankelijk van het monitoren en meten van zowel de stroom in een pijpleiding als de inhoud van de stromende media.”

Flow+

Voor het Flow + project werkten meetapparatuurspecialisten Bronkhorst High-Tech en Krohne Altometer samen met de TU Delft en de Universiteit Twente om de volgende generatie flowmeters te ontwikkelen met verbeterde mogelijkheden voor gegevensverzameling en verhoogde gevoeligheid. Het project wordt mede gefinancierd door Holland High Tech, Topsector HTSM en de Nederlandse Onderzoeksraad (NWO) met een publiekprivate samenwerkingssubsidie ​​voor onderzoek en innovatie.

Artikel via Holland High Tech news

The first exhibitors have join the international MicroNanoConference 2020, for a virtual booth on December 3 and 4, 2020. The iMNC2020 team is pleased to announce Bronkhorst and Nanoscribe as exhibitors. You will find these companies represented at the conference in December, you can already read more here.

BronkhorstBronkhorst

Bronkhorst offers an extensive product range of thermal, Coriolis and ultrasonic flow meters and controllers for low flow rates of gases and liquids. Our flow instruments are used for a variety of applications in laboratory, machinery, industrial and hazardous areas. By sharing our knowledge and closely cooperating with OEM customers in the field we develop customer specific low flow solutions, e.g. of multifunctional, pretested modules or skids for gas, liquid of vapour flow control. Bronkhorst is a MinacNed member, read more about Bronkhorst here.


NanoscribeNanoScribe

Nanoscribe develops and produces 3D printers and maskless lithography systems for microfabrication as well as specially developed printing materials and application-specific solution sets. The specialist for additive manufacturing of high-precision structures and objects on the nano, micro and mesoscale was founded in 2007. Today, with more than 70 employees and subsidiaries in China and the USA, Nanoscribe has become the market and technology leader. More than 2,000 users and operators at top universities and innovative industrial companies worldwide benefit from the groundbreaking technology and application tailored solutions for 3D Microfabrication. Read more about Nanoscribe here.

Exhibitor information

Would you like to join the international MicroNanoConference 2020 with your own virtual booth? Please download the exhibitor information here.

Five innovative Overijssel projects will receive a subsidy from the European OP Oost program 2014-2020. All projects come from Twente and together receive an amount of 5.7 million to develop further. MinacNed members IamFluidics, Bronkhorst, MASER and Saxion Hogeschool and are participants in various projects that were awarded European funding.

Advanced Microcarrier for culture of induced Pluripotent Stem Cells

IamFluidics will participate in the “Advanced Microcarrier for culture of induced Pluripotent Stem Cells” project. This is focused on developing a new type of microcarrier suitable for the cultivation of specialized stem cells. Stem cells offer a solution for many diseases such as cardiovascular disease, diabetes, Alzheimer’s and Parkinson’s. Stem cells can multiply themselves and be converted into specialized cell types. These cell types can for example be used to screen new drugs for these diseases.
Project partners: IamFluidics (Enschede), Scinus Cell expansion (Utrecht), River Biomedics (Enschede) en Universiteit Twente (Enschede).

Test advanced chips early’ project

What is the project? Within the ‘METEORITE’ project, new techniques are being developed to test chips with MEMS (Micro-Electro Mechanical Systems) for their functioning at an early stage. Faulty MEMS lead to great waste of materials and time. As a result, they remain relatively expensive and applications are limited. With a MEMS “chip”, it is possible to make small electronic devices with special functionalities (sensors) to, for example, detect movements, generate light and measure or analyze liquid flows. A standard chip is measured for errors at an early stage in the production process. Existing testing technology for MEMS is currently underdeveloped, wasting material and time.

Project partners: Salland Engineering (Zwolle), Bronkhorst High Tech (Ruurlo), Stichting Saxion (Enschede), University of Twente (Enschede) and Maser Engineering (Enschede).

Read more about the OP Oost projects that were awarded European funding on the newspage of RTV Oost.

Source: IamFluidics

 

A blog by Gerhard Bauhuis, Technical Sales Advisor at Bronkhorst.

The ‘Graphene Flagship’ is a Future and Emerging Technology Flagship by the European Commission. On April 3rd, 2020 they announced to be in transition to the so-called ‘Core 3’ stage, the fourth funding cycle of the €1 Billion research initiative funded by the European Commission.

In this three-year phase of the project, the Graphene Flagship expects to advance much further towards the commercialization of graphene and layered materials. While keeping an eye on fundamental research, the Graphene Flagship Core 3 will have a special focus on innovative research to boost graphene-enabled technologies to higher technology readiness levels.

What is graphene?

Graphene can be subdivided in three different types: single-layered, double-layered and multi-layered graphene:

  • Single-layered graphene is the purest form available with with unique characteristics. These characteristics make (single-layered) graphene an attractive product for a large number of applications.
  • Double-layered as well as multi-layered graphene have other (less qualitative) characteristics.

As the number of layers increases, it also becomes increasingly cheaper to produce. In this blog I limit myself to only single-layered graphene, because as of today this type still gives the best result in various research.

Graphene is the world’s first 2D material that consists of only a single atomic layer of carbon; the same material that’s used in diamonds and penciltips. The carbon atoms in graphene are ranked in a hexagon structure. Single-layered graphene is characterized by the following properties

  • 200 times stronger than steel
  • 1.000.000 times thinner than a single human hair
  • The world’s lightest material (1 m² weighs about 0,77 milligram)
  • Flexible
  • Transparent
  • Impenetrable for molecules
  • Excellent electrical and heat conduction

Graphene can also be combined with other materials, such as gases and metals, to produce new materials with the abovementioned properties or to improve existing materials. At this point there isn’t a method available yet to produce graphene on a larger scale against acceptable costs. However, this is still being researched.

Plasma Enhanced Chemical Vapour Deposition (PE-CVD)

Bronkhorst, 3D-model structure of graphene

Bronkhorst, 3D-model structure of graphene

There are a couple of different methods to produce graphene. One of the most common methods in single-layered graphene production is Plasma Enhanced Chemical Vapour Deposition (PE-CVD). In this method, a mixture of gases – in which at least one gas contains carbon – is heated until a plasma has formed. Mass flow meters and controllers are used in CVD processes to dose gases and liquids accurately.

In PE-CVD the plasma forms a graphene layer on a nickel or copper substrate. Heating takes place in a vacuum, but a more ‘green’ CVD process can be used as well, in which heating takes place under atmospheric pressure. By using Chemical Vapour Deposition large sheets of graphene can be produced.

Some of the precursors are liquids that need to be evaporated first, to be used in the CVD process in its gaseous form. It’s very important that the plasma is created with the right proportions and precision. This can be achieved by using highly accurate flow instruments. A deviation in the plasma can cause defects in the graphene layer. Defects can be impurities in the 2D structure that can change the unique properties of the material.

Research for high quality graphene by using atmospheric pressure plasma-based techniques

Bronkhorst CEM system for research at the University of Cordoba

Bronkhorst CEM system for research at the University of Cordoba

 

Our Spanish distributor, Iberfluid Instruments S.A, recently cooperated with the University of Cordoba in a research to investigate the opportunities regarding graphene production on a large scale by using a plasma based technique under atmospheric pressure. In this research ethanol was evaporated with the use of Bronkhorst evaporation system, the so-called Controlled Evaporation and Mixing (CEM) system, to form a plasma. With the use of an evaporation system liquids are being evaporated directly to create the right gas for the plasma. A possible setup of such an evaporation system can consist of a CEM system with an additional liquid flow meter (i.e. a Coriolis mass flow meter, from the mini CORI-FLOW series) for ethanol, a gas flow controller (i.e. an EL-FLOW mass flow controller) for argon, which functions as a carrier gas and finally a temperature-controlled control valve or mixing valve.

An evaporation system like the Bronkhorst CEM system can deliver excellent performance in terms of stability and accuracy. These properties guarantee a reliable creation of plasma, which eventually leads to higher quality graphene.

In the research document ‘Scalable graphene production from ethanol decomposition by microwave argon plasma torch’ is described why the University of Cordoba (ES) uses the Bronkhorst Controlled Evaporation and Mixing system in the PE-CVD graphene production process.

Areas of application for graphene

Due to a large amount of unique properties research takes place in numerous areas of application. The main focus is on single-layered and double-layered graphene. For now it seems that single-layered graphene still gives the best results. At the same time the use of so-called flakes has been taken into account. These flakes are tiny pieces of graphene which can be mixed with another material, such as polymers. The properties of these materials can be improved by adding graphene flakes, which makes graphene widely applicable in different industries. A couple of examples based on single-layered graphene:

  • Water purification: Scientists are currently developing an advanced filtration system based one graphene oxide that is being used to make polluted water drinkable.
  • Medical industry: Since graphene isn’t poisonous for the human body, research is being done to the possibilities to use graphene in medicine transport in the body, by attaching the medicine to the graphene. Graphene also has the properties to prevent bacteria formation, which makes it ideal to use as a coating for implants.
  • Energy industry: Because of the large surface and excellent electrical conduction, graphene could be used in energy storage. The goal is to make graphene batteries more compact than they are now, while increasing the capacity to make it possible to charge batteries within seconds.
  • Textile industry: Graphene could be used to process electronics in textiles, such as effective, efficient and highly accurate sensors. Furthermore, graphene anti-corrosion coatings and conductive inks can be made.
  • Semiconductor industry: Thanks to good electrical and thermal conductivity, graphene offers possibilities to increase the speed and capacity of chips  (for computers and smartphones).

Would you like more information about graphene?

Read our application note about the setup used at the University of Cordoba or download the research of John Bulmer, scientist at the University of Cambridge, about ‘Forecasting continuous carbon nanotube production in the floating catalyst environment’.

Read application note (Bronkhorst website)
Download the research (Science Direct, Elsevier)

Source blog post: Bronkhorst